Skip to main content

Bacteria

Bacteria


Bacteria are microscopic single-celled organisms that thrive in diverse environments. They can live within soil, in the ocean and inside the human gut. Humans' relationship with bacteria is complex. Sometimes they lend a helping hand, by curdling milk into yogurt, or helping with our digestion. At other times they are destructive, causing diseases like pneumonia and MRSA.

Structure

Based on the relative complexity of their cells, all living organisms are broadly classified as either prokaryotes or eukaryotes. 
Bacteria are prokaryotes. The entire organism consists of a single cell with a simple internal structure. Unlike eukaryotic DNA, which is neatly packed into a cellular compartment called the nucleus, bacterial DNA floats free, in a twisted thread-like mass called the nucleoid. 
Bacterial cells also contain separate, circular pieces of DNA called plasmids. Bacteria lack membrane-bound organelles , specialized cellular structures that are designed to execute a range of cellular functions from energy production to the transport of proteins. However, both bacterial and eukaryotic cells contain ribosomes. These spherical units are where proteins are assembled from individual amino acids, using the information encoded in a strand of messenger RNA

Classification

A few different criteria are used to classify bacteria. They can be distinguished by the nature of their cell walls, by their shape, or by differences in their genetic makeup. 
The Gram  stain  is a test used to identify bacteria by the composition of their cell walls. It is named for Hans Christian Gram, who developed the technique in 1884. Bacteria are first stained with a purple dye called crystal violet, which specifically binds to peptidoglycan, a complex structure of amino acids and sugars found in the cell wall. This is followed by a series of steps that ultimately remove any unbound or loosely bound crystal violet. 
Then the cells are stained with a second red-colored dye called safranin. Gram-positive bacteria stain purple because their cell walls are rich in peptidoglycan. On the other hand, Gram-negative bacteria whose cells walls have two layers take on a red coloring. The outer layer of lipids does not bind strongly to crystal violet and the dye is easily washed away during the staining process. For example, Streptococcus pneumoniae, which causes pneumonia, is a Gram-positive  bacterium, while Escherichia coli (E.coli) and Vibrio cholerae, which causes cholera, are Gram-negative bacteria. 
There are three basic bacterial shapes, according to "Mims Medical Microbiology." Round bacteria are referred to as cocci (singular: coccus); cylindrical, capsule-shaped bacteria as bacilli (singular: bacillus); and spiral bacteria are aptly called spirilla (singular: spirillum). Cocci can also associate with one anothe n different configurations: combinations of two or diplococcus; a linear chain or streptococcus; and a cluster or staphylococcus. The shapes and configurations of bacteria are often reflected in their names. For example, the milk-curdling Lactobacillus acidophilus are bacilli, and pneumonia-causing Streptococcus pneumoniae are a chain of cocci.  
The classification criteria mentioned thus far are based on physiological properties and morphology. However, classification of bacteria based on their evolutionary relationships to one another, that is to say, drawing a sort of family tree of all bacterial species, is a relatively new development. This type of phylogeneticclassification became possible with the advent of nucleotide sequencing technology (the ability to read the order of nucleotides in DNA or RNA). Since ribosomes are present in all living organisms, one can look at similarities and differences in the RNA sequences that encode certain ribosomal proteins and determine the degree of relatedness of different organisms

Bacteria in human health and disease

Bacteria can be beneficial as well as detrimental to human health. Commensal bacteria, which share space and resources within our bodies, tend to be helpful. In a 2012 article in the journal Nature, titled "Learning About Who We Are," David A. Relman, a microbiologist at Stanford University, states that there are about 10 times more microbial cells than human cells in the human body. The highest numbers of microbial species are found in the gut. 
The human gut is a comfortable setting for bacteria, with plenty of nutrients available for their sustenance. In a 2014 review article, "Analyzing the Human Microbiome: A 'How To' Guide for Physicians," in the American Journal of Gastroenterology, the authors mention that gut bacteria and other microorganisms aid in digestion, stave off colonization by harmful pathogens, and help in the development of the immune system. Moreover, the disruption of gut bacteria has been linked to certain disease conditions. For instance, patients with Crohn's disease have increased antibodies against their gut bacteria and their T-cells are quite aggressive toward bacterial antigens, according to the authors of "Gut Flora  Health  and Disease," published in The Lancet journal in 2003.
Other bacteria can cause infections. For example, Streptococcus pneumoniae causes pneumonia. Several bacteria ranging from group A StreptococcusClostridiumEscherichia coli and Staphylococcus aureuscan cause a rare but severe soft tissue infection called necrotizing  fasciitissometimes called "flesh-eating bacteria." According to the Centers for Disease Control, this infection affects the tissues surrounding muscles, nerves, fat, and blood vessels but it can be treated, especially when caught early.

Comments

higherschool11.blogspot.com

Liver

Liver  The liver is the gland in the body weighing between 1 and 2.3 kg it is situated in  the upper part of the abdomonal cavity occupying the greater part of the right hypochondriac region part of the epigastric region and extending into the left hypochondriac region organs associated with the liverer The liver is endoclosed in a thin inelastic capsule and incompletely covered by a layer of peritoneumv. Folds of peritoneum form supporting ligaments atteching the liver to the inferior surface of the diaphragm  The liver has four lobes .The two most obivious are the large right lobe and the  smaller , wedge-shape left lobe .  The other two the caudate and quadrate lobes are areas on the posterior  The portal fissure This is the name given to the region on the posterior surface of the liver where various structure enter and leave the gland Blood supply  The hepatic aetery and the portal vein take blood to the liver venous return is by a variable number o

kidney

Kidney The kidneys are two bean-shaped organs in the renal system. They help the body pass waste as urine. They also help filter blood before sending it back to the heart. The kidneys perform many crucial functions, including: maintaining overall fluid balance regulating and filtering minerals from blood filtering waste materials from food, medications, and toxic substances creating hormones that help produce red blood cells, promote bone health, and regulate blood pressure Nephrons Nephrons are the most important part of each kidney. They take in blood, metabolize nutrients, and help pass out waste products from filtered blood. Each kidney has about 1 million nephrons. Each has its own internal set of structures. Renal corpuscle After blood enters a nephron, it goes into the renal corpuscle, also called a Malpighian body. The renal corpuscle contains two additional structures: The glomerulus.  This is a cluster of capilla

Heart blood circulation

heart blood circulation  The circulatory system includes the  lymphatic system , which circulates  lymph . [1]  The passage of lymph for example takes much longer than that of blood. [2]  Blood is a fluid consisting of  plasma ,  red blood cells ,  white blood cells , and  platelets  that is circulated by the  heart  through the vertebrate vascular system, carrying oxygen and nutrients to and waste materials away from all body tissues. Lymph is essentially recycled excess blood plasma after it has been  filtered  from the  interstitial fluid  (between cells) and returned to the lymphatic system. The cardiovascular (from Latin words meaning "heart" and "vessel") system comprises the blood, heart, and  blood vessels . [3]  The lymph,  lymph nodes , and  lymph vessels  form the lymphatic system, which returns filtered blood plasma from the interstitial fluid (between cells) as lymph. The circulatory system of the blood is seen as having two components,