Endocrine System
The endocrine system is a chemical messenger system consisting of hormones, the group of glands of an organism that carry those hormones directly into the circulatory system to be carried towards distant target organs, and the feedback loops of homeostasis that the hormones drive. In humans, the major endocrine glands are the thyroid gland and the adrenal glands. In vertebrates, the hypothalamus is the neural control center for all endocrine systems. The field of study dealing with the endocrine system and its disorders is endocrinology, a branch of internal medicine
Special features of endocrine glands are, in general, their ductless nature, their vascularity, and commonly the presence of intracellular vacuoles or granules that store their hormones. In contrast, exocrine glands, such as salivary glands, sweat glands, and glandswithin the gastrointestinal tract, tend to be much less vascular and have ducts or a hollow lumen. A number of glands that signal each other in sequence are usually referred to as an axis, for example, the hypothalamic-pituitary-adrenal axis.
In addition to the specialized endocrine organs mentioned above, many other organs that are part of other body systems, such as bone, kidney, liver, heart and gonads, have secondary endocrine functions. For example, the kidney secretes endocrine hormones such as erythropoietin and renin. Hormones can consist of either amino acid complexes, steroids, eicosanoids, leukotrienes, or prostaglandins.
Function
See also: List of human endocrine organs and actions
Hormones
Main article: Hormone
A hormone is a class of signaling moleculesproduced by glands in multicellular organismsthat are transported by the circulatory systemto target distant organs to regulate physiologyand behaviour. Hormones have diverse chemical structures, mainly of 3 classes: eicosanoids, steroids, and amino acid/proteinderivatives (amines, peptides, and proteins). The glands that secrete hormones comprise the endocrine system. The term hormone is sometimes extended to include chemicals produced by cells that affect the same cell (autocrine or intracrine signalling) or nearby cells (paracrine signalling).
Hormones are used to communicate between organs and tissues for physiologicalregulation and behavioral activities, such as digestion, metabolism, respiration, tissuefunction, sensory perception, sleep, excretion, lactation, stress, growth and development, movement, reproduction, and mood
Cell signalling
The typical mode of cell signaling in the endocrine system is endocrine signaling, that is, using the circulatory system to reach distant target organs. However, there are also other modes, i.e., paracrine, autocrine, and neuroendocrine signaling. Purely neurocrine signaling between neurons, on the other hand, belongs completely to the nervous system.
Autocrine
Main article: Autocrine signalling
Autocrine signaling is a form of signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on the same cell, leading to changes in the cells.
Paracrine
Main article: Paracrine signaling
Some endocrinologists and clinicians include the paracrine system as part of the endocrine system, but there is not consensus. Paracrines are slower acting, targeting cells in the same tissue or organ. An example of this is somatostatin which is released by some pancreatic cells and targets other pancreatic cells.
Juxtacrine
Main article: Juxtacrine signalling
Juxtacrine signaling is a type of intercellular communication that is transmitted via oligosaccharide, lipid, or protein components of a cell membrane, and may affect either the emitting cell or the immediately adjacent cells.
It occurs between adjacent cells that possess broad patches of closely opposed plasma membrane linked by transmembrane channels known as connexons. The gap between the cells can usually be between only 2 and 4 nm.
Disease
Disability-adjusted life year for endocrine disorders per 100,000 inhabitants in 2002.
no data
less than 80
80–160
160–240
240–320
320–400
400–480
480–560
560–640
640–720
720–800
800–1000
more than 1000
Main article: Endocrine diseases
Diseases of the endocrine system are common,[8] including conditions such as diabetes mellitus, thyroid disease, and obesity. Endocrine disease is characterized by irregulated hormone release (a productive pituitary adenoma), inappropriate response to signaling (hypothyroidism), lack of a gland (diabetes mellitus type 1, diminished erythropoiesis in chronic renal failure), or structural enlargement in a critical site such as the thyroid (toxic multinodular goitre). Hypofunction of endocrine glands can occur as a result of loss of reserve, hyposecretion, agenesis, atrophy, or active destruction. Hyperfunction can occur as a result of hypersecretion, loss of suppression, hyperplastic or neoplastic change, or hyperstimulation.
Endocrinopathies are classified as primary, secondary, or tertiary. Primary endocrine disease inhibits the action of downstream glands. Secondary endocrine disease is indicative of a problem with the pituitary gland. Tertiary endocrine disease is associated with dysfunction of the hypothalamus and its releasing hormones.[citation needed]
As the thyroid, and hormones have been implicated in signaling distant tissues to proliferate, for example, the estrogen receptorhas been shown to be involved in certain breast cancers. Endocrine, paracrine, and autocrine signaling have all been implicated in proliferation, one of the required steps of oncogenesis.
Comments
Post a Comment